<strike id="1jt9v"><dl id="1jt9v"></dl></strike>
<strike id="1jt9v"></strike>
<strike id="1jt9v"><dl id="1jt9v"></dl></strike><strike id="1jt9v"><i id="1jt9v"></i></strike><ruby id="1jt9v"></ruby><strike id="1jt9v"></strike>
<span id="1jt9v"><i id="1jt9v"></i></span><span id="1jt9v"><dl id="1jt9v"><ruby id="1jt9v"></ruby></dl></span>
<span id="1jt9v"><video id="1jt9v"></video></span>
<span id="1jt9v"><dl id="1jt9v"><ruby id="1jt9v"></ruby></dl></span>
<strike id="1jt9v"></strike>
<strike id="1jt9v"><dl id="1jt9v"><del id="1jt9v"></del></dl></strike>
<strike id="1jt9v"></strike> <th id="1jt9v"></th>
<span id="1jt9v"></span>
<strike id="1jt9v"></strike>
<strike id="1jt9v"></strike>
<span id="1jt9v"><video id="1jt9v"><strike id="1jt9v"></strike></video></span>
高中數學必修一知識點
集合與函數概念 集合具有某種特定性質的事物的總體。這里的“事物”可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數學名詞。一組具有某種...[詳細]
一次函數 自變量x和因變量y有如下關系:y=kx+b,則此時稱y是x的一次函數。特別地,當b=0時,y是x的正比例函數。即:y=kx(k為常數,k≠0)。 二、一次函數的性質:1.y的變化值與對應的x的...[詳細]
二次函數 一般地,自變量x和因變量y之間存在如下關系: y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。II.二次函數的三種表達式...[詳細]
反比例函數 反比例函數形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。自變量x的取值范圍是不等于0的一切實數。反比例函數圖像性質:反比例函數的圖像為雙曲線。由于反比例函數屬于...[詳細]
對數函數 對數函數的一般形式為,它實際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。對于不同大小a所表示的函數圖形:可以看到對數函數的圖形只不過的指數函數...[詳細]
指數函數、函數奇偶性 指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。(2)指數函數的值域為大于0的實數集合...[詳細]
函數的定義域 (高中函數定義)設A,B是兩個非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A--B為集合A到集合B的...[詳細]
冪函數 當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性...[詳細]
高中數學必修二知識點
兩個平面的位置關系 兩個平面的位置關系:(1)兩個平面互相平行的定義:空間兩平面沒有公共點(2)兩個平面的位置關系:兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線...[詳細]
直線和平面的位置關系 直線和平面的位置關系:直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行 ①直線在平面內——有無數個公共點②直線和平面相交——有且只有一個公共點。直線與平面...[詳細]
空間兩直線的位置關系 空間兩直線的位置關系:空間兩條直線只有三種位置關系:平行、相交、異面1、按是否共面可分為兩類:(1)共面:平行、相交(2)異面:異面直線的定義:不同在任何一個平面內的兩...[詳細]
立體幾何 定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱...[詳細]
圓的方程 1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。 2、圓的方程(1)標準方程, 圓心,半徑為r; (2)一般方程,當時,方程表示圓[詳細]
直線與方程 一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值...[詳細]
高中數學公式(必修一、二)

三角函數公式 兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

三角函數公式 和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

三角函數公式 半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

三角函數公式 倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式

|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理
判別式

b2-4ac=0 注:方程有兩個相等的實根

b2-4ac>0 注:方程有兩個不等的實根

b2-4ac<0 注:方程沒有實根,有共軛復數根

圓的標準方程和一般方程

圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

降冪公式

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

拋物線及拋物線標準方程

拋物線:y=ax^2+bx+c

拋物線標準方程:y^2=2px

柱形 錐形體積 面積公式

直棱柱側面積 S=c*h 斜棱柱側面積 S=c'*h

正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'...[更多]

eol.cn簡介 | 聯系方式 | 網站聲明 | 京ICP證140769號 | 京ICP備12045350號 | 京公網安備 11010802020236號
版權所有 北京中教雙元科技集團有限公司 EOL Corporation
Mail to: webmaster@eol.cn
欧美激情在线观看